Project's information

Project's title Designing and manufacturing a maritime satellite communication station based on high sensitive magnetic sensor
Project’s list Scientific field/Program: National Program for Space Technology of Vietnam(2012-2015)
Project leader’s name Project leader’s name: Prof. Dr. Nguyen Huu DucResearch hosting institution: VNU University of Engineering and Technology, Vietnam National University, Hanoi
Project duration 01/01/2013 - 01/01/2016
Project’s budget 5.5 Billion VND
Classify Excellent
Goal and objectives of the project

-    To complete, develop and stabilize technology processes for manufacturing electronics compass based on magneto-electrostrictive effect; C-band receiver and integrated system (including mechanical, hardware and software components) for tracking and monitoring satellite signals.
-    To design and manufacture maritime satellite communication station.
-    To install, functionalize and outdoor test in normal weather conditions.

Main results

8.1. Design and assembly C-band receiver
C-band receiver was designed including two mixer stages: the first one is of a L-band down-converter and the second one is of HF or base band down-converter. This design solution enhances the gain receiver, extends the frequency range, which is ready for the broadband receiver applications. The L-band design exhibits an ability to integrate with the Ku-band receiver (frequency from 12 GHz to 18 GHz), that permits to use C-band receiver in Ku-band for the future VINASAT Satellite Service. Currently, this is a proper approach with long-term development in Vietnam in space technology researches and applications.
Main technical specifications of the receiver are as follows:
-    C-band receiver: C-band Gain: input of the LNA the signal -103 dBm. LNB Amplitude response -130 dBm. C-band input frequency: 3.200 MHz to 3.800 MHz. LNB output frequency of C-band: 950 MHz- 2.150 MHz. C-band to L-band Conversion Gain: 12.5 dB. LO frequency for C-band.
-    L-band receiver: Sensitivity: -113 dBm. Gain of L-Band Low Noise. Amplifiers: >16.4 dB. Low Noise Amplifier. Wide Frequency Range 850-2050 MHz. Intermediate Frequency (IF): 100 MHz. IF Gain: 81 dB. Dynamic range: 61dB. Wide range of frequencies 1200 MHz. L-band to IF Conversion Gain: 40 dB. AM/PM Conversion, Intermediate Frequency I/Q 100 MHz.
8.2. Electronic compass
Electronic compass was designed and manufactured including two main modules: magnetic sensor and electronic components. Magnetic sensor in use is based on magneto-electrostrictive effect. Indeed, the 2D magnetic sensor was assembled from two 1D single sensors (with a resonant frequency of f = 100 kHz) in orthogonally configuration. The angle resolution is of about 0.2 degree. In this context, the zero-offset was automatically calibrated thanks to an electronics circuit. In particular, the sensing signals were processed by using a self-designing lock-in amplifier readout circuit, which includes the sine waveform generator, standardization and measurement modules. Final signal is monitored and displayed by using a LCD graphic display with touch screen.
8.3. Maritime satellite communication system
A 3-axis maritime satellite communication antennas system was designed and manufactured thanks to an integration of high technologies such as GPS, high accuracy angular position sensors, tracking control systems, mechanical performances, ultra-high-frequency receiver. When a ship moves on the seawater, the antenna is stabilized with Azimuth, Elevation and Cross-level thanks to the controller system. So the antenna is constantly pointed towards the satellite direction and the signals are transmitted and/or received correctly.
This is a high accurate mechanical system based on timing belt-pulley and high vibration, shock and environmental standards to meet the harshest conditions at sea. The integrated sensor systems include electronic compass, tilt-sensor, gyro and GPS. In addition, the satellite signal intensity is used for a fine control.
AC servo motors, drivers and PID control units are applied.
The system was well installed on boats. It satisfies all capabilities to track the geostationary satellite position during motion.
Main technical specifications of the maritime satellite communication antennas system are as follows:
-    Elevation range: 15-80o; Azimuth range: 360o
-    Azimuth stabilization accuracy: 0,25o; Elevation stabilization accuracy: 0, 5o
-    Maximum Azimuth turning rate: 12o/s; Maximum Elevation turning rate: 12o/s.
-    Maximum turning acceleration: 12o/s2
-    Input power: 220V@30A; 75Ω

nhduc

Novelty and actuality and scientific meaningfulness of the results

A 3-axis maritime satellite communication antennas system was designed and manufactured thanks to the interdisciplinary integration of high technologies such as GPS, high accuracy angular position sensors, tracking control systems, mechanical performances, ultra-high-frequency receiver, etc. Among these developments, the following core technologies were successfully achieved: (i) Electronic compass based on self-fabricated piezo-magnetostrictive magnetic sensors of high sensitivity; (ii) C-band Ultra-High-Frequency receiver, including a K+ band downlink used for television transmission checking; (iii) Mechanical, PID control and satellite communication antenna auto-tracking systems; and (iv) Assembled mobile communication transceiver station. The system is well installed and operated on boats.
In particular, it exhibits a high potential to develop low cost commercial products in Vietnam.

Products of the project

10.1. Scientific papers in referred journals (list):
a) ISI/Scopus publications: 04
[1].    Tran Van Hoi, Nguyen Xuan Truong, Bach Gia Duong, Improvement of Steptracking Algorithm Used Formobile Receiver System Via Satellite, International Journal of Electrical and Computer Engineering (IJECE) ISSN: 2088-8708 SCOPUS  indexed Journal Vol.5, No.2, Scopus.
[2].    Tran Van Hoi, Nguyen Xuan Truong, Ngo Thi Lanh, Bach Gia Duong, Design of a C-Band Low-Noise Block Front-end for Satellite Receivers, International Journal of Applied Engineering Research (IJAER), Volume 11, Number 8 (2016) pp 5646-4652,ISSN 0973-4562, Scopus.
[3].    Tran Van Hoi, Ngo Thi Lanh, Nguyen Xuan Truong, Nguyen Huu Duc, Bach Gia Duong, Design of a Front-end for Satellite Receiver, International Journal of Electrical and Computer Engineering (IJECE), Vol.6, No. 5, 2016, pp. xx~xx, ISSN: 2088-8708, 2016 (in press), Scopus.
[4].    D.T. Huong Giang, D.X. Dang, N.X. Toan, N.V. Tuan and N.H. Duc, Distance magnetic nanoparticle detection using a magnetoelectric sensor for clinical interventions, Sensors and Actuators, A: Physics, 2016 (Major revision), ISI.
b) Papers published in other international journals: 02
[1].    L.K. Quynh, B.D. Tu, D.X. Dang, D.Q. Viet, L.T. Hien, D.T. Huong Giang, N.H. Duc, Detection of magnetic nanoparticles using simple AMR sensors in Wheatstone bridge, Journal of Science: Advanced Materials and Devices 1 (2016) 98-102, ScienceDirect.
[2].    D.T. Huong Giang, N.H. Duc, G. Agnus, T. Maroutian, P. Lecoeur, Fabrication and characterization of PZT string based MEMS devices, Journal of Science: Advanced Materials and Devices, 2016, http://dx.doi.org/10.1016/j.jsamd.2016.05.004, ScienceDirect.
c) Papers published in other national journals: 02
[1].    Tran Van Hoi, Nguyen Xuan Truong, Bach Gia Duong, Satellite Tracking Control System Using Fuzzy PID Controller, Tạp chí VNU Journal of Science: Mathematics – Physics 2015, Vol.31, No. 1 (2015) 36-46.
[2].    Đỗ Hương Giang, Bùi Đình Tú, Nguyễn Thị Ngọc, Nguyễn Hữu Đức, La bàn 2D ứng dụng trong các trạm thu vệ tinh di động, Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ, Tập 31, Số 4 (2015) 9-14.
d) International conference contributions: 03
[1].    Research, manufacturing optimal structure sensor measure the low magnetic field structure wheastone bridge based on anisotropic magnetoresistance effects, L.K. Quynh, B.D. Tu, D.Q. Viet, N.T. Thuy, N.X. Toan, T.M. Danh, N.H. Duc, D.T.H. Giang, Proceeding of The 5thinternational workshop on nanotechnology and application (IWNA 2015), page 416.
[2].    Tran Van Hoi, Hoang Duc Long, Bach Gia Duong, Low noise block downconverter design for satellite receiver system Vinasat 1 operating at C-band, The Proceedings of The 2013 IEICE International Conference on Integrated Circuits, Design and Verification (ICDV 2013), Ho Chi Minh 15-16/11/2013, page 110.
[3].    Tran Van Hoi, Hoang Duc Long, Bach Gia Duong, High gain low noise amplifier design used for RF front end application, The Proceedings of The 2013 IEICE International Conference on Integrated Circuits, Design and Verification (ICDV 2013), Ho Chi Minh 15-16/11/2013, page 243.
e) National conference contributions: 09
[1].    Cải tiến thuật toán bám từng bước dùng cho hệ thống di động qua vệ tinh, Trần Văn Hội, Bạch Gia Dương, Kỷ yếu Hội thảo Quốc gia 2014 về Điện tử, Truyền thông và Công nghệ Thông tin, REV-ECIT 2014, trang 209.
[2].    Nghiên cứu, chế tạo cảm biến đo dòng điện sử dụng hiệu ứng từ-điện trên nền vật liệu Metglas/PZT, Lê Văn Dương, Đỗ Thị Hương Giang, Nguyễn Thị Ngọc, Nguyễn Hữu Đức, Tuyển tập Báo cáo Hội nghị Vật lý Chất rắn và Khoa học Vật liệu toàn quốc lần thứ 8, Thái Nguyên, trang 71.
[3].    Nghiên cứu, tối ưu cấu hình và mô phỏng lý thuyết hiệu ứng từ-điện trên các vật liệu tổ hợp Metglas/PZT, Phạm Anh Đức, Đỗ Thị Hương Giang, Nguyễn Thị Ngọc, Nguyễn Hữu Đức, Tuyển tập Báo cáo Hội nghị Vật lý Chất rắn và Khoa học vật liệu toàn quốc lần thứ 8, Thái Nguyên, trang 119.
[4].    Nghiên cứu, chế tạo cảm biến đo từ trường thấp dạng cầu wheatstone dựa trên hiệu ứng từ-điện trở dị hướng (AMR), Bùi Đình Tú, Đỗ Thị Hương Giang, Đồng Quốc Việt, Nguyễn Xuân Toàn, Trần Mậu Danh, Lê Khắc Quynh, Nguyễn Hải Bình, Nguyễn Hữu Đức, Tuyển tập Báo cáo Hội nghị Vật lý Chất rắnvà Khoa học vật liệu toàn quốc lần thứ 8, Thái Nguyên, trang 25.
[5].    Chế tạo và nghiên cứu màng mỏng từ-điện Terfecohan/PZT cấu trúc nanô, Tuyển tập Hội nghị Vật lý Chất rắn và Khoa học Vật liệu toàn quốc lần thứ 9 (SPMS-2015), Tp. Hồ Chí Minh, trang 16.
[6].    Fabrication and Investigation of magnetic sensor based on anisotropic magnetoresitance effects for magnetic beads detection, L.K. Quynh, B.D. Tu, D.X. Dang, D.Q. Viet, N.H. Duc, L.T. Hien and D.T. Huong Giang, Tuyển tập Hội nghị Vật lý Chất rắn và Khoa học Vật liệu toàn quốc lần thứ 9 (SPMS-2015), Tp. Hồ Chí Minh 8-10/11/2015, trang 93.
[7].    Tăng cường độ nhạy của cảm biến đo từ trường 2D dựa trên hiệu ứng từ-điện theo nguyên tắc mạch từ khép kín, Nguyễn Văn Tuấn, Lê Khắc Quynh, Nguyễn Hữu Đức và Đỗ Thị Hương Giang, Tuyển tập Hội nghị Vật lý Chất rắn và Khoa học Vật liệu toàn quốc lần thứ 9 (SPMS-2015), Tp. Hồ Chí Minh 8-10/11/2015, trang 140.
[8].    Cảm biến từ trường siêu nhạy dựa trên hiệu ứng từ - điện cho việc phát hiện nhanh các hạt từ kích thước nano, Nguyễn Xuân Toàn, Đặng Xuân Đăng, Lê Khắc Quynh, Bùi Đình Tú, Nguyễn Hữu Đức và Đỗ Thị Hương Giang, Tuyển tập Hội nghị Vật lý Chất rắn và Khoa học Vật liệu toàn quốc lần thứ 9 (SPMS-2015), Tp. Hồ Chí Minh 8-10/11/2015, trang 117.
[9].    Designing Wideband Microstrip Bandpass Filter for Satellite Receiver Systems, Tran Van Hoi, Bach Gia Duong, Tuyển tập Hội nghị Quốc gia về Điện tử - Truyền thông (REV 2013), Hà Nội 17-18/12/2013, page 140.
f) Books: 01
Advanced Magnetism and Magnetic Materials, vol 2: Aspects in Magneto-electrostrictive Materials, Nguyen Huu Duc Edit., VNU press, 2015.
    g) Patents: 01
”Sensitive magnetic sensor based on magnetostriction-piezoelectric effect, fabrication processes and sensor devices”Decision No44873/QĐ-SHTT (July 25, 2016)of National Office of Intellectual Property of Vietnam.
    10.2. Principle of applications, designs, technology processes, reports,...
a) Type I - Samples, products, equipments...
-    Electronic compass based on Magnetostriction-piezoeletric effect.
-    Maritime satellite communication station: C-band receiver integrated in tracking and monitoring satellite receivers.
b) Type II – Principle of applications, designs, technology processes, reports,…
-    Technology processes of electronic compass fabrication
-    Technology processes of sensor fabrication and main blocks of automatic control, tracking and azimuth and elevator angle monitoring systems.
-    Functional designs, principle diagrams of automatic tracking and monitoring antenna systems.
-    Software for calculating and analyzing angles and errors.
c) Type III – Education and training:
-    MSc students: 05
-    PhD students: 02

Research region

Place of application or suggested application (if applicable)
    In maritime vesselses
Petition of the project's leader (if applicable):
The project was satisfied all requirements as initial project proposals and signed contract. In the next phase, it would be efficient for this research to be funded for continuing developing the system for a realizable commercial system.

Images of project
1597024376046-nhduc.jpg